LP Bounds in an Interval-Graph Algorithm for Orthogonal-Packing Feasibility

نویسندگان

  • Gleb Belov
  • Heide Rohling
چکیده

We consider the feasibility problem OPP in higher-dimensional orthogonal packing: given a set of d-dimensional (d ≥ 2) rectangular items, decide whether all of them can be orthogonally packed in the given rectangular container without rotation. The 1D ‘bar’ LP relaxation of OPP reduces the latter to a 1D cutting-stock problem where the packing of each stock bar represents a possible 1D stitch through an OPP layout. The dual multipliers of the LP provide us with another kind of powerful bounding information (conservative scales). We investigate how the set of possible 1D packings can be tightened using the overlapping information of item projections on the axes, with the goal to tighten the relaxation. We integrate the bar relaxation into an interval-graph algorithm for OPP, which operates on such overlapping relations. Numerical results on 2D and 3D instances demonstrate the efficiency of tightening leading to a speedup and stabilization of the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Branch-and-Price Graph-Theoretical Algorithm for Orthogonal-Packing Feasibility

Contents 1. Introduction 1 1.1. Formulations and exact methods for OPP 1 1.2. Relaxations and bounds 2 1.3. Our contributions 2 2. The interval-graph model and a simplification 3 Discussion 4 3. An overview of the algorithm of Fekete and Schepers 4 3.

متن کامل

One-dimensional relaxations and LP bounds for orthogonal packing

We consider the feasibility problem in d-dimensional orthogonal packing (d ≥ 2), called Orthogonal Packing Problem (OPP): given a set of ddimensional rectangular items, decide whether all of them can be orthogonally packed in the given rectangular container without item rotation. We review two kinds of 1D relaxations of OPP. The first kind is non-preemptive cumulative-resource scheduling, equiv...

متن کامل

Lower-Dimensional Bounds and a New Model for Higher-Dimensional Orthogonal Packing

Consider the feasibility problem in higher-dimensional orthogonal packing. Given a set I of d-dimensional rectangles, we need to decide whether a feasible packing in a d-dimensional rectangular container is possible. No item rotation is allowed and item edges are parallel to the coordinate axes. Typically, solution methods employ some bounds to facilitate the decision. Various bounds are known,...

متن کامل

Lower-dimensional Relaxations of Higher-dimensional Orthogonal Packing

Consider the feasibility problem in higher-dimensional orthogonal packing. Given a set I of d-dimensional rectangles, we need to decide whether a feasible packing in a d-dimensional rectangular container is possible. No item rotation is allowed and item edges are parallel to the coordinate axes. Typically, solution methods employ some bounds to facilitate the decision. Various bounds are known,...

متن کامل

On Open Packing Number of Graphs

In a graph G = (V,E), a subset $S⊂V$ is said to be an open packing set if no two vertices of S have a common neighbour in G. The maximum cardinality of an open packing set is called the open packing number and is denoted by $ρ^{o}$. This paper further studies on this parameter by obtaining some new bounds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Operations Research

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2013